Přístupnostní navigace
E-application
Search Search Close
Publication detail
BONANNO, G. CHINNI, A. RADULESCU, V.
Original Title
Existence of two non-zero weak solutions for a p(•)-biharmonic problem with Navier boundary conditions
Type
journal article in Web of Science
Language
English
Original Abstract
In this paper, the existence of non-trivial weak solutions for some problems with Navier boundary conditions driven by the p(center dot)-biharmonic operator is investigated. The proofs combine variational methods with topological arguments.
Keywords
p(center dot)-biharmonic-type operators; Navier boundary value problem; variational methods
Authors
BONANNO, G.; CHINNI, A.; RADULESCU, V.
Released
2. 10. 2023
Publisher
EUROPEAN MATHEMATICAL SOC-EMS
Location
BERLIN
ISBN
1720-0768
Periodical
Rendiconti Lincei-Matematica e Applicazioni
Year of study
34
Number
3
State
Swiss Confederation
Pages from
727
Pages to
743
Pages count
17
URL
https://ems.press/content/serial-article-files/40204
BibTex
@article{BUT188311, author="Gabriele {Bonanno} and Antonia {Chinni} and Vicentiu {Radulescu}", title="Existence of two non-zero weak solutions for a p(•)-biharmonic problem with Navier boundary conditions", journal="Rendiconti Lincei-Matematica e Applicazioni", year="2023", volume="34", number="3", pages="727--743", doi="10.4171/RLM/1025", issn="1720-0768", url="https://ems.press/content/serial-article-files/40204" }