Přístupnostní navigace
E-application
Search Search Close
Publication detail
TOMAŠOV, A. BUKOVSKÝ, J. ZÁVIŠKA, P. HORVÁTH, T. LÁTAL, M. MÜNSTER, P.
Original Title
Acoustic insights: advancing object classification in urban landscapes using distributed acoustic sensing and convolutional neural networks
Type
conference paper
Language
English
Original Abstract
The paper introduces an innovative object classification method for urban environments, employing distributed acoustic sensing (DAS) to address the complexities of urban landscapes. Utilizing omnipresent optical telecommunication cables, our approach involves a modified convolutional neural network (CNN) with transfer learning, achieving up to 85% accuracy. This method reuses most of the original network for feature extraction, with a final layer customized for new urban datasets – initially trained at the Brno University of Technology and then adapted to city center data. The model effectively identifies urban elements like vehicles and pedestrians, showcasing the potential of DAS for real-time classification in urban management and planning.
Keywords
Convolutional neural networks;Machine learning;Cross validation;Fiber optics;Telecommunications;Fiber optics sensors
Authors
TOMAŠOV, A.; BUKOVSKÝ, J.; ZÁVIŠKA, P.; HORVÁTH, T.; LÁTAL, M.; MÜNSTER, P.
Released
18. 6. 2024
ISBN
0277-786X
Periodical
Proceedings of SPIE
Year of study
13017
Number
1301715
State
United States of America
Pages count
5
BibTex
@inproceedings{BUT188412, author="Adrián {Tomašov} and Jan {Bukovský} and Pavel {Záviška} and Tomáš {Horváth} and Michal {Látal} and Petr {Münster}", title="Acoustic insights: advancing object classification in urban landscapes using distributed acoustic sensing and convolutional neural networks", booktitle="Machine Learning in Photonics", year="2024", journal="Proceedings of SPIE", volume="13017", number="1301715", pages="5", doi="10.1117/12.3021990", issn="0277-786X" }