Přístupnostní navigace
E-application
Search Search Close
Publication detail
GAO, H. GAO, W. PUMERA, M.
Original Title
3D-Printed Nanostructured Copper Substrate Boosts the Sodiated Capability and Stability of Antimony Anode for Sodium-Ion Batteries
Type
journal article in Web of Science
Language
English
Original Abstract
Sodium-ion batteries (SIBs) represent a viable substitute to lithium-ion batteries due to their affordability and resource abundance. For SIBs, antimony (Sb) shows potential as anode material but is impeded by the high volumetric variations. Here the challenges of Sb sodium storage by introducing the nanostructured Cu substrate for enhanced Sb adhesion and morphology optimization is addressed, which is realized by fused deposition modeling (FDM) printing of Cu substrate, subsequent high-temperature sintering, and electrodeposition of Sb. In SIBs, the Sb deposited on three dimensional (3D) printed Cu substrate performs improved cycling stability compared with that of Sb@Cu with commercial Cu foil substrate, which can be attributed to the nanostructure of the 3D-Cu substrate. Such architecture of 3D-Cu induces the generation of pine-leaf-like Sb clusters to promote stability and kinetics, and it aids the adhesion between the Sb cluster and 3D-Cu substrate for preventing the Sb detachment and restructuring the Sb cluster to the robust porous ligament-channel Sb framework. The morphology evolution, (de)sodiation mechanism, and gas evolution are explored by ex situ scanning electron microscope, operando X-ray diffraction, and operando differential electrochemical mass spectrometry separately. The developed Sb@3D-Cu anode offers a flexible pathway for constructing 3D-printed self-supported electrodes for SIBs. The FDM 3D printing utilizing metal-polymer filaments is emerging for fabricating nanostructured metals. By introducing this technique, a highly improved Cu current collector (3D-Cu) compared with commercial Cu foil, is obtained and significantly boosts the sodiated performance of Sb anode. This enlarges FDM 3D-printing applications in SIBs.image
Keywords
additive manufacturing; anode; fused deposition modeling; operando X-ray diffraction; sodium ion battery
Authors
GAO, H.; GAO, W.; PUMERA, M.
Released
1. 5. 2024
Publisher
Wiley-VCH
Location
WEINHEIM
ISBN
1616-3028
Periodical
Advanced functional materials
Year of study
34
Number
19
State
Federal Republic of Germany
Pages count
9
URL
https://onlinelibrary.wiley.com/doi/10.1002/adfm.202310563
Full text in the Digital Library
http://hdl.handle.net/11012/249530
BibTex
@article{BUT188948, author="Hui {Gao} and Wanli {Gao} and Martin {Pumera}", title="3D-Printed Nanostructured Copper Substrate Boosts the Sodiated Capability and Stability of Antimony Anode for Sodium-Ion Batteries", journal="Advanced functional materials", year="2024", volume="34", number="19", pages="9", doi="10.1002/adfm.202310563", issn="1616-3028", url="https://onlinelibrary.wiley.com/doi/10.1002/adfm.202310563" }