Přístupnostní navigace
E-application
Search Search Close
Publication detail
TOMAŠOV, A. DEJDAR, P. MÜNSTER, P. HORVÁTH, T.
Original Title
Utilizing a State of Polarization Change Detector and Machine Learning for Enhanced Security in Fiber-Optic Networks
Type
conference paper
Language
English
Original Abstract
The paper presents a novel method for securing fiber-optic infrastructures using a state of polarization analyzer combined with machine learning algorithms. The proposed system detects vibrations indicative of security breaches, achieving an F1-score above 95.65 %.}
Keywords
Fiber Bragg gratings; Fiber networks; Machine learning; Neural networks; Optical fibers; Polarization
Authors
TOMAŠOV, A.; DEJDAR, P.; MÜNSTER, P.; HORVÁTH, T.
Released
5. 5. 2024
Publisher
Optica Publishing Group
ISBN
978-1-957171-39-5
Book
CLEO: Applications and Technology 2024
Pages count
2
URL
https://opg.optica.org/abstract.cfm?uri=CLEO_AT-2024-JTu2A.217
BibTex
@inproceedings{BUT189498, author="Adrián {Tomašov} and Petr {Dejdar} and Petr {Münster} and Tomáš {Horváth}", title="Utilizing a State of Polarization Change Detector and Machine Learning for Enhanced Security in Fiber-Optic Networks", booktitle="CLEO: Applications and Technology 2024", year="2024", pages="2", publisher="Optica Publishing Group", doi="10.1364/CLEO\{_}AT.2024.JTu2A.217", isbn="978-1-957171-39-5", url="https://opg.optica.org/abstract.cfm?uri=CLEO_AT-2024-JTu2A.217" }