Přístupnostní navigace
E-application
Search Search Close
Publication detail
POKORNÝ, M. ŽELASKO, P. ROUPEC, J.
Original Title
Genetic Algorithm Utilization in Fuzzy Regression Modelling
Type
conference paper
Language
English
Original Abstract
This paper introduces a soft-computing oriented approach to Takagi-Sugeno fuzzy modelling using the evolutionary principles. The presented algorithm allows determination of relevant input variables of fuzzy model from their potential candidates. Genetic algorithms are applied to optimize fuzzy input variables space through genetic fuzzy clustering procedure and to identify the fuzzy model. Some advanced procedures e.g. individuals lifetime limitation and a shade zone of genes are used. To clarify the advantages of the proposed approaches the numerical example of modellin of fuzzy non-linear system is presented.
Keywords
Genetic algorithm;fuzzy model identification
Authors
POKORNÝ, M.; ŽELASKO, P.; ROUPEC, J.
Released
29. 8. 2004
Location
Awaji, Japan
Pages from
154
Pages to
161
Pages count
8
BibTex
@inproceedings{BUT20755, author="Miroslav {Pokorný} and Petr {Želasko} and Jan {Roupec}", title="Genetic Algorithm Utilization in Fuzzy Regression Modelling", booktitle="Proceedings of Taiwan-Japan Symposium 2004 On Fuzzy Systems & Innovational Computing", year="2004", number="1", pages="8", address="Awaji, Japan" }