Přístupnostní navigace
E-application
Search Search Close
Publication detail
POKORNÝ, M. ŽELASKO, P. ROUPEC, J.
Original Title
Fuzzy Clustering Technology in Fuzzy Model Identification
Type
conference paper
Language
English
Original Abstract
This paper introduces a soft-computing oriented approach to Takgi-Sugeno fuzzy modelling using the evolutionary principles. Genetic algorithm are applied to optimize fuzzy input variables space through genetic fuzzy clustering procedure and to identify the fuzzy model. Some advanced procedures e.g. individuals lifetime limitation and redundant genes application are used. The presented algorithm allows also the determination of the relevant inpus variables of fuzzy model from theirs potential candidates.To clarify the advantages of the proposed approaches the numerical example of modelling of fuzzy non-linear system is also introduced.
Keywords
Takagi-Sugeno fuzzy model;input variables selection;fuzzy clustering;advanced genetic algorithm;numerical example
Authors
POKORNÝ, M.; ŽELASKO, P.; ROUPEC, J.
Released
31. 8. 2004
Location
Japonsko
Pages from
168
Pages to
173
Pages count
6
BibTex
@inproceedings{BUT22575, author="Miroslav {Pokorný} and Petr {Želasko} and Jan {Roupec}", title="Fuzzy Clustering Technology in Fuzzy Model Identification", booktitle="Proceedings of 7th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty", year="2004", pages="6", address="Japonsko" }