Přístupnostní navigace
E-application
Search Search Close
Publication detail
KARAFIÁT, M. SZŐKE, I. ČERNOCKÝ, J.
Original Title
Using Gradient Descent Optimization for Acoustics Training from Heterogeneous Data
Type
article in a collection out of WoS and Scopus
Language
English
Original Abstract
This paper is on using the gradient descent optimization for acoustics training from heterogeneous data. We study the use of heterogeneous data for training of acoustic models.
Keywords
speech, acoustic models, heterogeneous data, HLDA system, gradient descent training, robustness
Authors
KARAFIÁT, M.; SZŐKE, I.; ČERNOCKÝ, J.
RIV year
2010
Released
6. 9. 2010
Publisher
Springer Verlag
Location
Brno
ISBN
978-3-642-15759-2
Book
Proc. Text, Speech and Dialog 2010
Edition
LNAI 6231
0302-9743
Periodical
Lecture Notes in Computer Science
Year of study
Number
9
State
Federal Republic of Germany
Pages from
322
Pages to
329
Pages count
8
URL
http://www.fit.vutbr.cz/research/groups/speech/publi/2010/karafiat_TSD_2010_322.pdf
BibTex
@inproceedings{BUT34926, author="Martin {Karafiát} and Igor {Szőke} and Jan {Černocký}", title="Using Gradient Descent Optimization for Acoustics Training from Heterogeneous Data", booktitle="Proc. Text, Speech and Dialog 2010", year="2010", series="LNAI 6231", journal="Lecture Notes in Computer Science", volume="2010", number="9", pages="322--329", publisher="Springer Verlag", address="Brno", isbn="978-3-642-15759-2", issn="0302-9743", url="http://www.fit.vutbr.cz/research/groups/speech/publi/2010/karafiat_TSD_2010_322.pdf" }