Přístupnostní navigace
E-application
Search Search Close
Publication detail
LUKÁČOVÁ, M., WARNECKE, G.
Original Title
Lax-Wendroff type second order evolution Galerkin methods for multidimensional hyperbolic systems
Type
journal article - other
Language
English
Original Abstract
The aim of this paper is to present a technique for the construction of higher order genuinely multidimensional finite difference schemes solving systems of conservation laws. We derive simple order conditions guaranteeing that the schemes are p-th order accurate in space and time and apply them to evolution Galerkin (EG) methods for the wave equation system in two space dimensions.
Keywords
genuinely multidimensional schemes, finite difference methods, numerical diffusion, hyperbolic systems, wave equation, Euler equations, evolution Galerkin schemes
Authors
RIV year
2004
Released
1. 2. 2000
ISBN
0928-0200
Periodical
East - West Journal of Numerical Mathamatics
Year of study
8
Number
2
State
United States of America
Pages from
127
Pages to
152
Pages count
26
BibTex
@article{BUT40987, author="Mária {Lukáčová} and Gerald {Warnecke}", title="Lax-Wendroff type second order evolution Galerkin methods for multidimensional hyperbolic systems", journal="East - West Journal of Numerical Mathamatics", year="2000", volume="8", number="2", pages="26", issn="0928-0200" }