Přístupnostní navigace
E-application
Search Search Close
Publication detail
TRYHUK, V.
Original Title
On transformations $z(t)=y(\phi(t))$ of ordinary differential equations
Type
journal article - other
Language
English
Original Abstract
The paper describes the general form of an ordinary differential equation of the order $n+1\ (n\geq 1)$ which allows a~nontrivial global transformation consisting of the change of the independent variable. A~result given by J. Aczél is generalized. A~functional equation of the form $$ f(s, v, w_{11}v_{1}, \ldots, \sum_{j=1}^{n}w_{nj}v_{j}) = \sum_{j=1}^{n}w_{n+1 j}v_{j} + w_{n+1 n+1}f(x, v, v_{1}, \ldots, v_{n}), $$ where $ w_{ij} = a_{ij}(x_{1}, \ldots, x_{i-j+1}) $ are given functions, $ w_{n+1 1} = g(x, x_{1}, \ldots, x_{n}),$ is solved on $R.$
Key words in English
ordinary differential equations, linear differential equations, transformations, functional equations
Authors
Released
1. 1. 2000
Publisher
ČSAV
Location
Praha
ISBN
0011-4642
Periodical
Czechoslovak Mathematical Journal
Year of study
50
Number
125
State
Czech Republic
Pages from
509
Pages to
518
Pages count
10
BibTex
@article{BUT41271, author="Václav {Tryhuk}", title="On transformations $z(t)=y(\phi(t))$ of ordinary differential equations", journal="Czechoslovak Mathematical Journal", year="2000", volume="50", number="125", pages="509--518", issn="0011-4642" }