Publication detail

Singular Antiperiodic Boundary Value Problem with Given Maximal Values for Solutions

PŘIBYL, O. STANĚK, S.

Original Title

Singular Antiperiodic Boundary Value Problem with Given Maximal Values for Solutions

Type

journal article - other

Language

English

Original Abstract

The singular boundary value problem $(\phi(x'))' + \mu f(t,x,x')=0$, $x(0)+x(T)=0$, $x'(0)+x'(T)=0$, $\max\{x(t): 0 \le t \le T\}=A$ depending on the parameter $\mu$ is considered. Here the function $f$ satisfies local Carath\'eodory conditions on $[0,T] \times (\R\setminus \{0\})^2$ and $f$ may be singular at the zero value of its phase variables. The paper presents conditions which guarantee that for any $A>0$ there exists $\mu_A >0$ such that the above problem with $\mu=\mu_A$ has a solution. The proofs are based on regularization and sequential techniques and use the Leray-Schauder degree.

Keywords

Singular boundary value problem, antiperiodic boundary conditions, dependence on a parameter, $\phi$-Laplacian, existence, Leray-Schauder degree.

Authors

PŘIBYL, O.; STANĚK, S.

Released

1. 6. 2007

Publisher

Functional Differential Equations

ISBN

0793-1786

Periodical

Functional Differential Equations

Year of study

14

Number

2/4

State

State of Israel

Pages from

103

Pages to

114

Pages count

12

BibTex

@article{BUT44364,
  author="Oto {Přibyl} and Svatoslav {Staněk}",
  title="Singular Antiperiodic Boundary Value Problem with Given Maximal Values for Solutions",
  journal="Functional Differential Equations",
  year="2007",
  volume="14",
  number="2/4",
  pages="103--114",
  issn="0793-1786"
}