Publication detail
Solutions of singular antiperiodic boundary value problems
PŘIBYL, O.
Original Title
Solutions of singular antiperiodic boundary value problems
Type
journal article - other
Language
English
Original Abstract
Sufficient conditions for the existence of a solution of the equation $$\Big (g(x'(t)) \Big )'=f\Big (t,x(t),x'(t)\Big)$$ with the antiperiodic conditions \mbox{$x(0)+x(T)=0$}, \mbox{$x'(0)+x'(T)=0$} are established. Our nonlinearity $f$ may be singular at its phase variables. The~proofs are based on a~combination of regularity and sequential techniques and use the~topological transversality principle.
Keywords
singular second-order differential equation, g-Laplacian, antiperiodic boundary conditions, topological transversality principle
Authors
PŘIBYL, O.
Released
10. 6. 2005
ISBN
1586-8850
Periodical
Miskolc Mathematical Notes
Year of study
6
Number
1
State
Hungary
Pages from
47
Pages to
64
Pages count
18
BibTex
@article{BUT46132,
author="Oto {Přibyl}",
title="Solutions of singular antiperiodic boundary value problems",
journal="Miskolc Mathematical Notes",
year="2005",
volume="6",
number="1",
pages="47--64",
issn="1586-8850"
}