Publication detail

Solutions of singular antiperiodic boundary value problems

PŘIBYL, O.

Original Title

Solutions of singular antiperiodic boundary value problems

Type

journal article - other

Language

English

Original Abstract

Sufficient conditions for the existence of a solution of the equation $$\Big (g(x'(t)) \Big )'=f\Big (t,x(t),x'(t)\Big)$$ with the antiperiodic conditions \mbox{$x(0)+x(T)=0$}, \mbox{$x'(0)+x'(T)=0$} are established. Our nonlinearity $f$ may be singular at its phase variables. The~proofs are based on a~combination of regularity and sequential techniques and use the~topological transversality principle.

Keywords

singular second-order differential equation, g-Laplacian, antiperiodic boundary conditions, topological transversality principle

Authors

PŘIBYL, O.

Released

10. 6. 2005

ISBN

1586-8850

Periodical

Miskolc Mathematical Notes

Year of study

6

Number

1

State

Hungary

Pages from

47

Pages to

64

Pages count

18

BibTex

@article{BUT46132,
  author="Oto {Přibyl}",
  title="Solutions of singular antiperiodic boundary value problems",
  journal="Miskolc Mathematical Notes",
  year="2005",
  volume="6",
  number="1",
  pages="47--64",
  issn="1586-8850"
}