Přístupnostní navigace
E-application
Search Search Close
Publication detail
AL-SHERBAZ, A. KUSELER, T. ADAMS, C. MARŠÁLEK, R. POVALAČ, K.
Original Title
WiMAX Parameters Adaptation Through A Baseband Processor Using Discrete Particle Swarm Method
Type
journal article - other
Language
English
Original Abstract
The measurements of physical level parameters can become the area where decisions about cognitive radio will have the most striking effect. FPGA enables real time analyses of physical layer data to satisfy constraints like dynamic spectrum allocations, data throughput and the coding rate. Cognitive radio will be based on simple network management techniques, using remote procedure calls. Intelligent Knowledge-Base System (IKBS) techniques will be used to search the parameter space in selecting changes to the system. WiMAX PHY-layer functions will be managed cognitively by a FPGA based controller to optimise the performance of the system. Instead of simple bit loading methods, the global multi-criteria optimisation promise possibility to adapt more parameters with respect to several objectives. In this paper the application of particle swarm optimisation to fixed WiMAX-OFDM parameter adaptation is presented and compared with the greedy bit loading algorithm.
Keywords
WiMAX, Cognitive Radio, Particle Swarm Optimisation, PSO
Authors
AL-SHERBAZ, A.; KUSELER, T.; ADAMS, C.; MARŠÁLEK, R.; POVALAČ, K.
RIV year
2010
Released
27. 4. 2010
ISBN
1759-0787
Periodical
International Journal of Microwave and Wireless Technologies
Year of study
2010 (2)
Number
2
State
United Kingdom of Great Britain and Northern Ireland
Pages from
165
Pages to
171
Pages count
7
BibTex
@article{BUT47686, author="Ali {Al-Sherbaz} and Torben {Kuseler} and Chris {Adams} and Roman {Maršálek} and Karel {Povalač}", title="WiMAX Parameters Adaptation Through A Baseband Processor Using Discrete Particle Swarm Method", journal="International Journal of Microwave and Wireless Technologies", year="2010", volume="2010 (2)", number="2", pages="165--171", issn="1759-0787" }