Přístupnostní navigace
E-application
Search Search Close
Publication detail
HORNÍKOVÁ, J. ŠANDERA, P. ČERNÝ, M. POKLUDA, J.
Original Title
Multiscale Modelling of Nanoindentation Test in Copper Crystal
Type
abstract
Language
English
Original Abstract
The nanoindentation test in the dislocation free crystal of copper is simulated by a nonlinear elastic finite element analysis coupled with both ab initio calculations of the ideal shear strength and crystallographic considerations. The onset of microplasticity, associated with the pop-in effect identified in experimental nanoindentation tests (creation of first dislocations), is assumed to be related to the moment of achieving the value of the ideal shear strength for the copper crystal. Calculated values of the critical indentation depth lie within the range of experimentally observed pop-ins in the copper crystal. The related indentation load is somewhat lower than that observed in the experiment.
Keywords
Nanoindentation; Ab initio calculation; Ideal shear strength; Copper crystal; Finite element analysis
Authors
HORNÍKOVÁ, J.; ŠANDERA, P.; ČERNÝ, M.; POKLUDA, J.
Released
29. 6. 2007
Publisher
Vutium
Location
Brno
Pages from
45
Pages to
Pages count
1
BibTex
@misc{BUT60602, author="Jana {Horníková} and Pavel {Šandera} and Miroslav {Černý} and Jaroslav {Pokluda}", title="Multiscale Modelling of Nanoindentation Test in Copper Crystal", year="2007", pages="45--45", publisher="Vutium", address="Brno", note="abstract" }