Přístupnostní navigace
E-application
Search Search Close
Publication detail
POVEY, D. BURGET, L. AGARWAL, M. AKYAZI, P. GHOSHAL, A. GLEMBEK, O. GOEL, N. KARAFIÁT, M. RASTROW, A. ROSE, R. SCHWARZ, P. THOMAS, S.
Original Title
The subspace Gaussian mixture model-A structured model for speech recognition
Type
journal article in Web of Science
Language
English
Original Abstract
Speech recognition based on the Hidden Markov Model-Gaussian Mixture Model (HMM-GMM) framework generally involves training a completely separate GMM in each HMM state.We introduce a model in which the HMM states share a common structure but the means and mixture weights are allowed to vary in a subspace of the full parameter space, controlled by a global mapping from a vector space to the space of GMM parameters.
Keywords
Speech recognition; Gaussian Mixture Model; Subspace Gaussian Mixture Model
Authors
POVEY, D.; BURGET, L.; AGARWAL, M.; AKYAZI, P.; GHOSHAL, A.; GLEMBEK, O.; GOEL, N.; KARAFIÁT, M.; RASTROW, A.; ROSE, R.; SCHWARZ, P.; THOMAS, S.
RIV year
2011
Released
1. 4. 2011
Publisher
Elsevier Science
ISBN
0885-2308
Periodical
COMPUTER SPEECH AND LANGUAGE
Year of study
25
Number
2
State
United Kingdom of Great Britain and Northern Ireland
Pages from
404
Pages to
439
Pages count
36
URL
https://www.fit.vut.cz/research/publication/9670/
BibTex
@article{BUT76383, author="Daniel {Povey} and Lukáš {Burget} and Mohit {Agarwal} and Pinar {Akyazi} and Arnab {Ghoshal} and Ondřej {Glembek} and Nagendra {Goel} and Martin {Karafiát} and Ariya {Rastrow} and Richard {Rose} and Petr {Schwarz} and Samuel {Thomas}", title="The subspace Gaussian mixture model-A structured model for speech recognition", journal="COMPUTER SPEECH AND LANGUAGE", year="2011", volume="25", number="2", pages="404--439", issn="0885-2308", url="https://www.fit.vut.cz/research/publication/9670/" }