Přístupnostní navigace
E-application
Search Search Close
Publication detail
DRAHOŠOVÁ, M. SEKANINA, L.
Original Title
Coevolution in Cartesian Genetic Programming
Type
article in a collection out of WoS and Scopus
Language
English
Original Abstract
Cartesian genetic programming (CGP) is a branch of genetic programming which has been utilized in various applications. This paper proposes to introduce coevolution to CGP in order to accelerate the task of symbolic regression. In particular, fitness predictors which are small subsets of the training set are coevolved with CGP programs. It is shown using five symbolic regression problems that the (median) execution time can be reduced 2-5 times in comparison with the standard CGP.
Keywords
Cartesian genetic programming, coevolution, fitness modeling, fitness predictors, symbolic regression.
Authors
DRAHOŠOVÁ, M.; SEKANINA, L.
RIV year
2012
Released
23. 3. 2012
Publisher
Springer Verlag
Location
Heidelberg
ISBN
978-3-642-29138-8
Book
Proc. of the 15th European Conference on Genetic Programming
Edition
Lecture Notes in Computer Science
Pages from
182
Pages to
193
Pages count
12
URL
http://www.springerlink.com/content/e47453258l284p60/fulltext.pdf
BibTex
@inproceedings{BUT91456, author="Michaela {Drahošová} and Lukáš {Sekanina}", title="Coevolution in Cartesian Genetic Programming", booktitle="Proc. of the 15th European Conference on Genetic Programming", year="2012", series="Lecture Notes in Computer Science", volume="7244", pages="182--193", publisher="Springer Verlag", address="Heidelberg", doi="10.1007/978-3-642-29139-5\{_}16", isbn="978-3-642-29138-8", url="http://www.springerlink.com/content/e47453258l284p60/fulltext.pdf" }