Publication detail

Fracture mechanisms of structural and functional multilayer ceramic structures

BERMEJO, R. ŠESTÁKOVÁ, L. GRUNBICHLER, H. LUBE, T. SUPANCIC, P. DANZER, R.

Original Title

Fracture mechanisms of structural and functional multilayer ceramic structures

Type

journal article - other

Language

English

Original Abstract

The fracture of mechanically loaded ceramics is a consequence of material critical defects located either within the bulk or at the surface, resulting from the processing and/or machining and handling procedures. The size and type of these defects determine the mechanical strength of the specimens, yielding a statistically variable strength and brittle fracture which limits their use for load-bearing applications. In recent years the attempt to design bio-inspired multilayer ceramics has been proposed as an alternative choice for the design of structural components with improved fracture toughness (e.g. through energy release mechanisms such as crack branching or crack deflection) and mechanical reliability (i.e. flaw tolerant materials). This approach could be extended to complex multilayer engineering components such as piezoelectric actuators or LTCCs (consisting of an interdigitated layered structure of ceramic layers and thin metal electrodes) in order to enhance their performance functionality as well as ensuring mechanical reliability. In this work the fracture mechanisms in several structural and functional multilayer components are investigated in order to understand the role of the microstructure and layered architecture (e.g. metal-ceramic or ceramic-ceramic) on their mechanical behaviour. Design guidelines based on experiments and theoretical approaches are given aiming to enhance the reliability of multilayer components.

Keywords

Multilayer architecture, piezo-actuators, LTCC, strength, crack propagation, reinforcement mechanisms, Weibull statistics

Authors

BERMEJO, R.; ŠESTÁKOVÁ, L.; GRUNBICHLER, H.; LUBE, T.; SUPANCIC, P.; DANZER, R.

RIV year

2011

Released

10. 6. 2011

ISBN

1013-9826

Periodical

Key Engineering Materials (print)

Year of study

465

Number

1

State

Swiss Confederation

Pages from

41

Pages to

46

Pages count

6

BibTex

@article{BUT92366,
  author="Raul {Bermejo} and Lucie {Malíková} and Hannes {Grunbichler} and Tanja {Lube} and Peter {Supancic} and Robert {Danzer}",
  title="Fracture mechanisms of structural and functional multilayer ceramic structures",
  journal="Key Engineering Materials (print)",
  year="2011",
  volume="465",
  number="1",
  pages="41--46",
  issn="1013-9826"
}