Publication detail

From lattices to H_v -matrices

KŘEHLÍK, Š. NOVÁK, M.

Original Title

From lattices to H_v -matrices

Type

journal article in Web of Science

Language

English

Original Abstract

In this paper we study the concept of sets of elements, related to results of an associative binary operation. We discuss this issue in the context of matrices and lattices. First of all, we define hyperoperations similar to those used when constructing hyperstructures from quasi-ordered semigroups. This then enables us to show that if entries of matrices are elements of lattices, these considerations provide a natural link between matrices, some basic concepts of the hyperstructure theory including $H_v$--rings and $H_v$--matrices and also one recent construction of hyperstructures.

Keywords

Distributive lattice, $H_v$--matrix, $H_v$--ring, Join space, Partially ordered semigroup

Authors

KŘEHLÍK, Š.; NOVÁK, M.

Released

9. 12. 2016

ISBN

1224-1784

Periodical

Analele Stiintifice Ale Universitatii Ovidius Constanta, Seria Matematica

Year of study

XXIV

Number

3

State

Romania

Pages from

209

Pages to

222

Pages count

14

URL

BibTex

@article{BUT116986,
  author="Štěpán {Křehlík} and Michal {Novák}",
  title="From lattices to H_v -matrices",
  journal="Analele Stiintifice Ale Universitatii  Ovidius Constanta, Seria Matematica",
  year="2016",
  volume="XXIV",
  number="3",
  pages="209--222",
  doi="10.1515/auom-2016-0055",
  issn="1224-1784",
  url="http://www.anstuocmath.ro/mathematics//Anale2016Vvol3/10_Krehlik_S.__Novak_M..pdf"
}