Přístupnostní navigace
E-application
Search Search Close
Publication detail
ČERNÝ, M. ŠESTÁK, P. ŘEHÁK, P. VŠIANSKÁ, M. ŠOB, M.
Original Title
Ab initio tensile tests of grain boundaries in the fcc crystals of Ni and Co with segregated sp-impurities
Type
journal article in Web of Science
Language
English
Original Abstract
Models of $\Sigma5(210)$ grain boundaries in crystals of fcc Ni and fcc Co with segregated sp-impurities (Al, Si, P, S, Ga, Ge, As, Se, In, Sn, Sb, and Te) have been subjected to ab initio computational tensile tests. Two models of deformation (rigid grain shift and uniaxial loading) have been considered and their results have been compared. The results reveal striking differences in predictions from the models. Poisson contraction included in the model of uniaxial loading remarkably reduces the computed strength values but, unlike the rigid grain shift, predicts an enhancement of the grain boundary strength due to the presence of impurities (particularly those segregated in interstitial positions). These different predictions are discussed in terms of the effect of transverse stresses on the computed strength values.
Keywords
theoretical strength; computational tensile test; grain boundary embrittlement; ab initio calculations
Authors
ČERNÝ, M.; ŠESTÁK, P.; ŘEHÁK, P.; VŠIANSKÁ, M.; ŠOB, M.
Released
4. 7. 2016
ISBN
0921-5093
Periodical
Materials Science and Engineering A
Year of study
669
Number
7
State
Swiss Confederation
Pages from
218
Pages to
225
Pages count
8
URL
http://www.sciencedirect.com/science/article/pii/S0921509316305998
BibTex
@article{BUT125180, author="Miroslav {Černý} and Petr {Šesták} and Petr {Řehák} and Monika {Všianská} and Mojmír {Šob}", title="Ab initio tensile tests of grain boundaries in the fcc crystals of Ni and Co with segregated sp-impurities", journal="Materials Science and Engineering A", year="2016", volume="669", number="7", pages="218--225", doi="10.1016/j.msea.2016.05.083", issn="0921-5093", url="http://www.sciencedirect.com/science/article/pii/S0921509316305998" }