Přístupnostní navigace
E-application
Search Search Close
Publication detail
NOVOTNÝ, O. MATĚJKA, P. GLEMBEK, O. PLCHOT, O. GRÉZL, F. BURGET, L. ČERNOCKÝ, J.
Original Title
Analysis of the DNN-Based SRE Systems in Multi-language Conditions
Type
conference paper
Language
English
Original Abstract
This paper analyzes the behavior of our state-of-the-art Deep Neural Network/i-vector/PLDA-based speaker recognition systems in multi-language conditions. On the "Language Pack" of the PRISM set, we evaluate the systems performance using the NISTs standard metrics. We show that not only the gain from using DNNs vanishes, nor using dedicated DNNs for target conditions helps, but also the DNN-based systems tend to produce de-calibrated scores under the studied conditions. This work gives suggestions for directions of future research rather than any particular solutions to these issues.
Keywords
DNN, Multi-Language, Speaker Recognition
Authors
NOVOTNÝ, O.; MATĚJKA, P.; GLEMBEK, O.; PLCHOT, O.; GRÉZL, F.; BURGET, L.; ČERNOCKÝ, J.
Released
13. 12. 2016
Publisher
IEEE Signal Processing Society
Location
San Diego
ISBN
978-1-5090-4903-5
Book
Proceedings of SLT 2016
Pages from
199
Pages to
204
Pages count
6
URL
http://ieeexplore.ieee.org/document/7846265/
BibTex
@inproceedings{BUT132603, author="Ondřej {Novotný} and Pavel {Matějka} and Ondřej {Glembek} and Oldřich {Plchot} and František {Grézl} and Lukáš {Burget} and Jan {Černocký}", title="Analysis of the DNN-Based SRE Systems in Multi-language Conditions", booktitle="Proceedings of SLT 2016", year="2016", pages="199--204", publisher="IEEE Signal Processing Society", address="San Diego", doi="10.1109/slt.2016.7846265", isbn="978-1-5090-4903-5", url="http://ieeexplore.ieee.org/document/7846265/" }