Přístupnostní navigace
E-application
Search Search Close
Publication detail
VIČAR, T. KOLÁŘ, R.
Original Title
Random Forests Pixel-wise Classification for Detection and Segmentation of Cells in the Images from Holographic Microscope
Type
conference paper
Language
English
Original Abstract
Microscopic cell image analysis is widely used by biologists for cell behavior and cell morphology study. In dense cell cultures precise single-cell segmentation is challenging task and it is an important step for automatic cell analysis methods. This work introduces a novel method for robust single cell segmentation of images from holographic microscope. The method is based on pixel-wise classification with random forests for both background segmentation a cell detection, where cell detection image is refined with distance transform based detector. Final single cell segmentation combines both detection and background with seeded watershed. Proposed background segmentation part reaches results similar to other algorithms, but cell detection part of the algorithm is innovative and achieves significantly better result than commonly used detector.
Keywords
cell segmentation, cell detection, random forests, distance transform
Authors
VIČAR, T.; KOLÁŘ, R.
Released
28. 8. 2017
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Location
Brno
ISBN
978-80-214-5526-9
Book
Proceedings of IEEE Student Branch Conference Mikulov 2017
Edition number
první
Pages from
67
Pages to
70
Pages count
4
URL
http://www.radio.feec.vutbr.cz/ieee/userfiles/downloads/archive/2017-Mikulov/Proceedings_Mikulov_2017.pdf
BibTex
@inproceedings{BUT138793, author="Tomáš {Vičar} and Radim {Kolář}", title="Random Forests Pixel-wise Classification for Detection and Segmentation of Cells in the Images from Holographic Microscope", booktitle="Proceedings of IEEE Student Branch Conference Mikulov 2017", year="2017", number="první", pages="67--70", publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií", address="Brno", isbn="978-80-214-5526-9", url="http://www.radio.feec.vutbr.cz/ieee/userfiles/downloads/archive/2017-Mikulov/Proceedings_Mikulov_2017.pdf" }