Přístupnostní navigace
E-application
Search Search Close
Publication detail
BUITELAAR, P. WOOD, I. NEGI, S. ARCAN, M. MCCRAE, J. ABELE, A. ROBIN, C. ANDRYUSHECHKIN, V. ZIAD, H. SAGHA, H. SCHMITT, M. SCHULLER, B. SÁNCHEZ-RADA, J. IGLESIAS, C. NAVARRO, C. GIEFER, A. HEISE, N. MASUCCI, V. DANZA, F. CATERINO, C. SMRŽ, P. HRADIŠ, M. POVOLNÝ, F. KLIMEŠ, M. MATĚJKA, P. TUMMARELLO, G.
Original Title
MixedEmotions: An Open-Source Toolbox for Multimodal Emotion Analysis
Type
journal article in Web of Science
Language
English
Original Abstract
Recently, there is an increasing tendency to embed functionalities for recognizing emotions from user-generated media content in automated systems such as call-centre operations, recommendations, and assistive technologies, providing richer and more informative user and content profiles. However, to date, adding these functionalities was a tedious, costly, and time-consuming effort, requiring identification and integration of diverse tools with diverse interfaces as required by the use case at hand. The MixedEmotions Toolbox leverages the need for such functionalities by providing tools for text, audio, video, and linked data processing within an easily integrable plug-and-play platform. These functionalities include: 1) for text processing: emotion and sentiment recognition; 2) for audio processing: emotion, age, and gender recognition; 3) for video processing: face detection and tracking, emotion recognition, facial landmark localization, head pose estimation, face alignment, and body pose estimation; and 4) for linked data: knowledge graph integration. Moreover, the MixedEmotions Toolbox is open-source and free. In this paper, we present this toolbox in the context of the existing landscape, and provide a range of detailed benchmarks on standard test-beds showing its state-of-the-art performance. Furthermore, three real-world use cases show its effectiveness, namely, emotion-driven smart TV, call center monitoring, and brand reputation analysis.
Keywords
emotion analysis, open source toolbox, affective computing, linked data, audio processing, text processing, video processing
Authors
BUITELAAR, P.; WOOD, I.; NEGI, S.; ARCAN, M.; MCCRAE, J.; ABELE, A.; ROBIN, C.; ANDRYUSHECHKIN, V.; ZIAD, H.; SAGHA, H.; SCHMITT, M.; SCHULLER, B.; SÁNCHEZ-RADA, J.; IGLESIAS, C.; NAVARRO, C.; GIEFER, A.; HEISE, N.; MASUCCI, V.; DANZA, F.; CATERINO, C.; SMRŽ, P.; HRADIŠ, M.; POVOLNÝ, F.; KLIMEŠ, M.; MATĚJKA, P.; TUMMARELLO, G.
Released
23. 8. 2018
ISBN
1520-9210
Periodical
IEEE TRANSACTIONS ON MULTIMEDIA
Year of study
20
Number
9
State
United States of America
Pages from
2454
Pages to
2465
Pages count
12
URL
https://ieeexplore.ieee.org/document/8269329/?arnumber=8269329
BibTex
@article{BUT155798, author="BUITELAAR, P. and WOOD, I. and NEGI, S. and ARCAN, M. and MCCRAE, J. and ABELE, A. and ROBIN, C. and ANDRYUSHECHKIN, V. and ZIAD, H. and SAGHA, H. and SCHMITT, M. and SCHULLER, B. and SÁNCHEZ-RADA, J. and IGLESIAS, C. and NAVARRO, C. and GIEFER, A. and HEISE, N. and MASUCCI, V. and DANZA, F. and CATERINO, C. and SMRŽ, P. and HRADIŠ, M. and POVOLNÝ, F. and KLIMEŠ, M. and MATĚJKA, P. and TUMMARELLO, G.", title="MixedEmotions: An Open-Source Toolbox for Multimodal Emotion Analysis", journal="IEEE TRANSACTIONS ON MULTIMEDIA", year="2018", volume="20", number="9", pages="2454--2465", doi="10.1109/TMM.2018.2798287", issn="1520-9210", url="https://ieeexplore.ieee.org/document/8269329/?arnumber=8269329" }