Přístupnostní navigace
E-application
Search Search Close
Publication detail
PAN, L. LEHKÝ, D. NOVÁK, D. SLOWIK, O.
Original Title
Sensitivity analysis of prestressed concrete girders based on artificial neural network surrogate model.
Type
article in a collection out of WoS and Scopus
Language
English
Original Abstract
The paper describes a neural network ensemble-based parameter sensitivity analysis, which is compared with selected sensitivity analysis techniques usually utilized in stochastic structural modeling. The accuracy, stability and efficiency of the mentioned sensitivity analysis techniques are compared on example of prestressed concrete girder.
Keywords
Sensitivity analysis, prestressed concrete girders, neural network
Authors
PAN, L.; LEHKÝ, D.; NOVÁK, D.; SLOWIK, O.
Released
12. 9. 2018
ISBN
1437-1006
Periodical
Beton- und Stahlbetonbau
Year of study
113
Number
S2
State
Federal Republic of Germany
Pages from
1
Pages to
5
Pages count
URL
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fbest.201800059&file=best201800059-sup-0001-suppinfo.pdf
BibTex
@inproceedings{BUT156408, author="Lixia {Pan} and David {Lehký} and Drahomír {Novák} and Ondřej {Slowik}", title="Sensitivity analysis of prestressed concrete girders based on artificial neural network surrogate model.", booktitle="16th International Probabilistic Workshop", year="2018", journal="Beton- und Stahlbetonbau", volume="113", number="S2", pages="1--5", issn="1437-1006", url="https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fbest.201800059&file=best201800059-sup-0001-suppinfo.pdf" }