Přístupnostní navigace
E-application
Search Search Close
Publication detail
JANKOVÁ, Z.
Original Title
Wavelet Analysis for Stock Market Forcasting
Type
article in a collection out of WoS and Scopus
Language
English
Original Abstract
This paper deals with wavelet analysis and its application on the stock market. The time series of financial and economic data are usually non-linear and non-stationary. It has been shown that using decomposition models improves the prediction accuracy of these time series. These techniques include wavelet analysis, which decomposes data not only in the time domain but also in the frequency domain, and can predict non-periodic or non-stationary time series more accurately than Fourier transform. Given the decomposition of the time series using wavelet analysis, and last but not least attention is drawn to the advantages and disadvantages resulting from the use of the method in the financial markets.
Keywords
forecasting method; stock market; wavelet analysis; wavelet decomposition; wavelet transform
Authors
Released
28. 6. 2019
Publisher
Magnanimitas
Location
Hradec Králové, Czech Republic
ISBN
978-80-87952-30-6
Book
Interdisciplinární mezinárodní vědecká konference doktorandů a odborných asistentů QUAERE 2019
Edition number
9
Pages from
149
Pages to
153
Pages count
1229
BibTex
@inproceedings{BUT157717, author="Zuzana {Janková}", title="Wavelet Analysis for Stock Market Forcasting", booktitle="Interdisciplinární mezinárodní vědecká konference doktorandů a odborných asistentů QUAERE 2019", year="2019", number="9", pages="149--153", publisher="Magnanimitas", address="Hradec Králové, Czech Republic", isbn="978-80-87952-30-6" }