Přístupnostní navigace
E-application
Search Search Close
Publication detail
JANÁKOVÁ, I. HONEC, P. TULIS, V.
Original Title
Design and simulation of solutions to reduce the thermal resistance of lighting systems
Type
conference paper
Language
English
Original Abstract
The paper focuses on some essential steps in the development of high power line light. The research within the solved project deals with the development of a special extruded profile with a cooling channel and with heat removal by the circulation of the coolant and on the design of a cooling system with all the safety elements. The partial aim of the work is to determine the thermal resistance of individual parts of the device and to design modifications so that the total thermal resistance and maximum temperature are within the limits set by the effort to achieve maximum light output, but also the longevity, economy, safety, and reliability of operation. The analytical calculations, CFD simulations, and real testing were used to determine the required parameters. The main result presented in this paper is a novel developed PCB with a copper core and thermal vias. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Keywords
LED, line light source, line scan camera, computer vision, thermal resistance, light output, PCB, CFD simulation
Authors
JANÁKOVÁ, I.; HONEC, P.; TULIS, V.
Released
29. 10. 2019
Publisher
IFAC
ISBN
2405-8963
Periodical
IFAC-PapersOnLine (ELSEVIER)
Year of study
52
Number
27
State
Kingdom of the Netherlands
Pages from
446
Pages to
452
Pages count
7
URL
https://www.sciencedirect.com/science/article/pii/S2405896319326539
Full text in the Digital Library
http://hdl.handle.net/11012/184629
BibTex
@inproceedings{BUT160768, author="Ilona {Janáková} and Peter {Honec} and Vojtěch {Tulis}", title="Design and simulation of solutions to reduce the thermal resistance of lighting systems", booktitle="16th IFAC Conference on Programmable Devices and Embedded Systems PDeS 2019", year="2019", journal="IFAC-PapersOnLine (ELSEVIER)", volume="52", number="27", pages="446--452", publisher="IFAC", doi="10.1016/j.ifacol.2019.12.704", issn="2405-8963", url="https://www.sciencedirect.com/science/article/pii/S2405896319326539" }