Přístupnostní navigace
E-application
Search Search Close
Publication detail
ČERMÁK, J. NECHVÁTAL, L.
Original Title
Stability and chaos in the fractional Chen system
Type
journal article in Web of Science
Language
English
Original Abstract
The paper provides a theoretical analysis of some local bifurcations in the fractional Chen system. Contrary to the integer-order case, basic bifurcation properties of the fractional Chen system are shown to be qualitatively different from those described previously for the fractional Lorenz system. Further, the fractional Hopf bifurcation in the Chen system is expressed rigorously with respect to general entry parameters. Based on these observations, some particularities of the fractional dynamics of the Chen system are documented and its chaotic behavior for low derivative orders is discussed.
Keywords
Chen system; Fractional derivative; Stability; Fractional Hopf bifurcation; Chaos
Authors
ČERMÁK, J.; NECHVÁTAL, L.
Released
1. 8. 2019
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Location
THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
ISBN
0960-0779
Periodical
Chaos, Solitons & Fractals
Year of study
125
Number
1
State
United Kingdom of Great Britain and Northern Ireland
Pages from
24
Pages to
33
Pages count
10
URL
https://www.sciencedirect.com/science/article/pii/S0960077919301675?via%3Dihub
BibTex
@article{BUT161236, author="Jan {Čermák} and Luděk {Nechvátal}", title="Stability and chaos in the fractional Chen system", journal="Chaos, Solitons & Fractals", year="2019", volume="125", number="1", pages="24--33", doi="10.1016/j.chaos.2019.05.007", issn="0960-0779", url="https://www.sciencedirect.com/science/article/pii/S0960077919301675?via%3Dihub" }