Přístupnostní navigace
E-application
Search Search Close
Publication detail
NĚMCOVÁ, A. SVOZILOVÁ, V. BUCSUHÁZY, K. SMÍŠEK, R. MÉZL, M. HESKO, B. BELÁK, M. BILÍK, M. MAXERA, P. SEITL, M. DOMINIK, T. SEMELA, M. ŠUCHA, M. KOLÁŘ, R.
Original Title
Multimodal Features for Detection of Driver Stress and Fatigue: Review
Type
journal article in Web of Science
Language
English
Original Abstract
Driver fatigue and stress significantly contribute to higher number of car accidents worldwide. Although, different detection approaches have been already commercialized and used by car producers (and third party companies), research activities in this field are still needed in order to increase the reliability of these alert systems. Also, in the context of automated driving, the driver mental state assessment will be an important part of cars in future. This paper presents state-of-the-art review of different approaches for driver fatigue and stress detection and evaluation. We describe in details various signals (biological, car and video) and derived features used for these tasks and we discuss their relevance and advantages. In order to make this review complete, we also describe different datasets, acquisition systems and experiment scenarios.
Keywords
driver fatigue; driver stress; traffic accident; physiological signals; multimodal features
Authors
NĚMCOVÁ, A.; SVOZILOVÁ, V.; BUCSUHÁZY, K.; SMÍŠEK, R.; MÉZL, M.; HESKO, B.; BELÁK, M.; BILÍK, M.; MAXERA, P.; SEITL, M.; DOMINIK, T.; SEMELA, M.; ŠUCHA, M.; KOLÁŘ, R.
Released
1. 6. 2021
Publisher
IEEE
ISBN
1558-0016
Periodical
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
Year of study
22
Number
6
State
United States of America
Pages from
3214
Pages to
3233
Pages count
20
URL
https://ieeexplore.ieee.org/document/9031734
Full text in the Digital Library
http://hdl.handle.net/11012/195664
BibTex
@article{BUT163233, author="Andrea {Němcová} and Veronika {Svozilová} and Kateřina {Bucsuházy} and Radovan {Smíšek} and Martin {Mézl} and Branislav {Hesko} and Michal {Belák} and Martin {Bilík} and Pavel {Maxera} and Martin {Seitl} and Tomáš {Dominik} and Marek {Semela} and Matúš {Šucha} and Radim {Kolář}", title="Multimodal Features for Detection of Driver Stress and Fatigue: Review", journal="IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS", year="2021", volume="22", number="6", pages="3214--3233", doi="10.1109/TITS.2020.2977762", issn="1558-0016", url="https://ieeexplore.ieee.org/document/9031734" }