Přístupnostní navigace
E-application
Search Search Close
Publication detail
JAKUBÍČEK, R. VIČAR, T. CHMELÍK, J.
Original Title
A Tool for Automatic Estimation of Patient Position in Spinal CT Data
Type
conference paper
Language
English
Original Abstract
Most of the recently available research and challenge data lack the meta-data containing any information about the patient position. This paper presents a tool for automatic rotation of CT data into a standardized (Head First Supine) patient position. The proposed method is based on the prediction of rotation angle with convolutional neural network, and it achieved nearly perfect results with an accuracy of 99.55 %. We provide implementations with easy to use example for both, Matlab and Python (PyTorch), which can be used, for example, for automatic rotation correction of VerSe2020 challenge data.
Keywords
Patient position estimation; Convolutional neural network; Computed tomography
Authors
JAKUBÍČEK, R.; VIČAR, T.; CHMELÍK, J.
Released
30. 11. 2020
Publisher
Springer Nature Switzerland AG 2021
Location
Switzerland
ISBN
978-3-030-64610-3
Book
EMBEC 2020, IFMBE Proceedings 80
1680-0737
Periodical
IFMBE PROCEEDINGS
Year of study
80
State
Kingdom of Sweden
Pages from
51
Pages to
56
Pages count
6
URL
https://link.springer.com/chapter/10.1007/978-3-030-64610-3_7
BibTex
@inproceedings{BUT166032, author="Roman {Jakubíček} and Tomáš {Vičar} and Jiří {Chmelík}", title="A Tool for Automatic Estimation of Patient Position in Spinal CT Data", booktitle="EMBEC 2020, IFMBE Proceedings 80", year="2020", journal="IFMBE PROCEEDINGS", volume="80", pages="51--56", publisher="Springer Nature Switzerland AG 2021", address="Switzerland", doi="10.1007/978-3-030-64610-3\{_}7", isbn="978-3-030-64610-3", issn="1680-0737", url="https://link.springer.com/chapter/10.1007/978-3-030-64610-3_7" }