Přístupnostní navigace
E-application
Search Search Close
Publication detail
KRATOCHVÍLA, L.
Original Title
TECHNIQUES FOR AVOIDING MODEL OVERFITTING ON SMALL DATASET
Type
article in a collection out of WoS and Scopus
Language
English
Original Abstract
Building a deep learning model based on small dataset is difficult, even impossible. To avoiding overfitting, we must constrain model, which we train. Techniques as data augmentation, regularization or data normalization could be crucial. We have created a benchmark with a simple CNN image classifier in order to find the best techniques. As a result, we compare different types ofdata augmentation and weights regularization and data normalization on a small dataset.
Keywords
Deep Learning; Dataset size; Overfitting; Data Augmentation; Regularization; Image Classification; Batch Normalization; Data Normalization
Authors
Released
27. 4. 2021
Publisher
Vysoké učené Technické, Fakulta elektrotechniky a komunikačních technologií
Location
Brno
ISBN
978-80-214-5942-7
Book
Proceedings I of the 27th Conference STUDENT EEICT 2021
Pages from
451
Pages to
456
Pages count
5
BibTex
@inproceedings{BUT171161, author="Lukáš {Kratochvíla}", title="TECHNIQUES FOR AVOIDING MODEL OVERFITTING ON SMALL DATASET", booktitle="Proceedings I of the 27th Conference STUDENT EEICT 2021", year="2021", pages="451--456", publisher="Vysoké učené Technické, Fakulta elektrotechniky a komunikačních technologií", address="Brno", isbn="978-80-214-5942-7" }