Publication detail
Uniform exponential stability of linear delayed integro-differential vector equations
BEREZANSKY, L. DIBLÍK, J. SVOBODA, Z. ŠMARDA, Z.
Original Title
Uniform exponential stability of linear delayed integro-differential vector equations
Type
journal article in Web of Science
Language
English
Original Abstract
Uniform exponential stability of a linear delayed integro-differential vector equation is considered. The main result is of an explicit type, depending on all delays, and its proof is based on an a priori estimation of solutions, a Bohl-Perron type result, and utilization of the matrix measure.
Keywords
A priori estimation; Delay; Exponential stability; Integro-differential systems; Linear systems Bohl-Perron type result
Authors
BEREZANSKY, L.; DIBLÍK, J.; SVOBODA, Z.; ŠMARDA, Z.
Released
5. 1. 2021
ISBN
0022-0396
Periodical
J.Differetial Equations
Year of study
270
Number
5
State
United States of America
Pages from
573
Pages to
595
Pages count
23
URL
BibTex
@article{BUT171676,
author="Leonid {Berezansky} and Josef {Diblík} and Zdeněk {Svoboda} and Zdeněk {Šmarda}",
title="Uniform exponential stability of linear delayed integro-differential vector equations",
journal="J.Differetial Equations",
year="2021",
volume="270",
number="5",
pages="573--595",
doi="10.1016/j.jde.2020.08.011",
issn="0022-0396",
url="https://www.sciencedirect.com/science/article/pii/S0022039620304551"
}