Přístupnostní navigace
E-application
Search Search Close
Publication detail
MIN, S. FAJČÍK, M. DOČEKAL, M. ONDŘEJ, K. SMRŽ, P.
Original Title
NeurIPS 2020 EfficientQA Competition: Systems, Analyses and Lessons Learned
Type
article in a collection out of WoS and Scopus
Language
English
Original Abstract
We review the EfficientQA competition from NeurIPS 2020. The competition focused on open-domain question answering (QA), where systems take natural language questions as input and return natural language answers. The aim of the competition was to build systems that can predict correct answers while also satisfying strict on-disk memory budgets. These memory budgets were designed to encourage contestants to explore the trade-off between storing retrieval corpora or the parameters of learned models. In this report, we describe the motivation and organization of the competition, review the best submissions, and analyze system predictions to inform a discussion of evaluation for open-domain QA.
Keywords
question answering, QA, ODQA, efficientQA, memory, disk memory, budget, efficient parameter, retrieval corpora
Authors
MIN, S.; FAJČÍK, M.; DOČEKAL, M.; ONDŘEJ, K.; SMRŽ, P.
Released
1. 8. 2021
Publisher
Proceedings of Machine Learning Research
Location
online
ISBN
2640-3498
Year of study
133
Number
Pages from
86
Pages to
111
Pages count
25
URL
http://proceedings.mlr.press/v133/min21a/min21a.pdf
BibTex
@inproceedings{BUT175821, author="MIN, S. and FAJČÍK, M. and DOČEKAL, M. and ONDŘEJ, K. and SMRŽ, P.", title="NeurIPS 2020 EfficientQA Competition: Systems, Analyses and Lessons Learned", booktitle="Proceedings of the NeurIPS 2020 Competition and Demonstration Track", year="2021", series="Proceedings of Machine Learning Research", volume="133", number="133", pages="86--111", publisher="Proceedings of Machine Learning Research", address="online", issn="2640-3498", url="http://proceedings.mlr.press/v133/min21a/min21a.pdf" }