Přístupnostní navigace
E-application
Search Search Close
Publication detail
Aviso, K.B., Capili, M.J., Chin, H.H., Fan, Y.V., Klemeš, J.J., Tan, R.R.
Original Title
Detecting Patterns in Energy Use and Greenhouse Gas Emissions of Cities Using Machine Learning
Type
journal article in Scopus
Language
English
Original Abstract
Cities are expected to play a major role in managing climate change in the coming decades. The actual environmental performance of urban centres is difficult to predict due to the complex interplay of technologies and infrastructure with social, economic, and political factors. Machine learning (ML) techniques can be used to detect patterns in high-level city data to determine factors that influence favourable climate performance. In this work, rough set-based ML (RSML) is used to identify such patterns in the Sustainable Cities Index (SCI), which ranks 100 of the world's major urban centres based on three broad criteria that cover social, environmental, and economic dimensions. These main criteria are further broken down into 18 detailed criteria that are used to calculate the aggregate SCI scores of the listed cities. Two of the environmental criteria measure energy intensity and greenhouse gas (GHG) emissions. RSML is used to generate interpretable rule-based (if/then) models that predict energy utilisation and GHG emissions performance of cities based on the other criteria in the database. Attribute reduction techniques are used to identify a set of 7 non-redundant criteria for energy use and 9 non-redundant criteria for GHG emissions; 6 criteria are common to these two sets. Then, RSML is used to generate rule-based models. A 10-rule model is determined for energy intensity, while an 11-rule model is found for GHG emissions. Both models were reduced further by eliminating rules with weak generalisation capability. A key insight from the rule-based models is that social, environmental, and economic attributes are associated with energy intensity and GHG emissions due to indirect effects. © 2021, AIDIC Servizi S.r.l.
Keywords
detecting; patterns; energy; greenhouse; gas emissions; cities; machine learning
Authors
Released
15. 11. 2021
Publisher
Italian Association of Chemical Engineering - AIDIC
ISBN
2283-9216
Periodical
Chemical Engineering Transactions
Number
88
State
Republic of Italy
Pages from
403
Pages to
408
Pages count
6
URL
http://www.cetjournal.it/cet/21/88/067.pdf
BibTex
@article{BUT175945, author="Hon Huin {Chin} and Yee Van {Fan} and Jiří {Klemeš}", title="Detecting Patterns in Energy Use and Greenhouse Gas Emissions of Cities Using Machine Learning", journal="Chemical Engineering Transactions", year="2021", number="88", pages="403--408", doi="10.3303/CET2188067", issn="2283-9216", url="http://www.cetjournal.it/cet/21/88/067.pdf" }