Přístupnostní navigace
E-application
Search Search Close
Publication detail
Chin, H.H., Varbanov, P.S., You, F., Sher, F., Klemeš, J.J.
Original Title
Plastic Circular Economy Framework using Hybrid Machine Learning and Pinch Analysis
Type
journal article in Web of Science
Language
English
Original Abstract
The worldwide plastic waste accumulation has posed probably irreversible harm to the environment, and the main dilemma for this global issue is: How to define the waste quality grading system to maximise plastic recyclability? This work reports a machine learning approach to evaluating the recyclability of plastic waste by categorising the quality trends of the contained polymers with auxiliary materials. The result reveals the hierarchical resource quality grades predictors that restrict the mapping of the waste sources to the demands. The Pinch Analysis framework is then applied using the quality clusters to maximise plastic recyclability. The method identifies a Pinch Point – the ideal waste quality level that limits the plastic recycling rate in the system. The novel concept is applied to a problem with different polymer types and properties. The results show the maximum recycling rate for the case study to be 38 % for PET, 100 % for PE and 92 % for PP based on the optimal number of clusters identified. Trends of environmental impacts with different plastic recyclability and footprints of recycled plastic are also compared.
Keywords
Machine Learning; Pinch Analysis; Plastic Circular Economy; Plastic recycling
Authors
Released
1. 9. 2022
Publisher
Elsevier B.V.
ISBN
0921-3449
Periodical
RESOURCES CONSERVATION AND RECYCLING
Number
184
State
Kingdom of the Netherlands
Pages from
106387
Pages to
Pages count
14
URL
https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0921344922002312
BibTex
@article{BUT178089, author="Hon Huin {Chin} and Petar Sabev {Varbanov} and Jiří {Klemeš}", title="Plastic Circular Economy Framework using Hybrid Machine Learning and Pinch Analysis", journal="RESOURCES CONSERVATION AND RECYCLING", year="2022", number="184", pages="106387--106387", doi="10.1016/j.resconrec.2022.106387", issn="0921-3449", url="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0921344922002312" }