Přístupnostní navigace
E-application
Search Search Close
Publication detail
HRDINA, J. NÁVRAT, A. ZALABOVÁ, L.
Original Title
On symmetries of a sub-Riemannian structure with growth vector (4,7)
Type
journal article in Web of Science
Language
English
Original Abstract
We study symmetries of specific left-invariant sub-Riemannian structure with filtration (4, 7) and their impact on sub-Riemannian geodesics of corresponding control problem. We show that there are two very different types of geodesics, they either do not intersect the fixed point set of symmetries or are contained in this set for all times. We use the symmetry reduction to study properties of geodesics.
Keywords
Nilpotent algebras; Lie symmetry group; Carnot groups; Sub-Riemannian geodesics
Authors
HRDINA, J.; NÁVRAT, A.; ZALABOVÁ, L.
Released
17. 7. 2022
Publisher
SPRINGER HEIDELBERG
Location
HEIDELBERG
ISBN
0003-4622
Periodical
ANNALI DI MATEMATICA PURA ED APPLICATA
Year of study
1
Number
State
Republic of Italy
Pages from
Pages to
14
Pages count
URL
https://link.springer.com/article/10.1007/s10231-022-01242-6
BibTex
@article{BUT178837, author="Jaroslav {Hrdina} and Aleš {Návrat} and Lenka {Zalabová}", title="On symmetries of a sub-Riemannian structure with growth vector (4,7)", journal="ANNALI DI MATEMATICA PURA ED APPLICATA", year="2022", volume="1", number="1", pages="1--14", doi="10.1007/s10231-022-01242-6", issn="0003-4622", url="https://link.springer.com/article/10.1007/s10231-022-01242-6" }