Přístupnostní navigace
E-application
Search Search Close
Publication detail
ZHENG, M. ZHANG, B. RADULESCU, V.
Original Title
Multi-Peak Solutions for Coupled Nonlinear Schrodinger Systems in Low Dimensions
Type
journal article in Web of Science
Language
English
Original Abstract
In this paper, we construct the solutions to the nonlinear Schrodinger system. We construct the solution for attractive and repulsive cases. When $x_0$ is a local maximum point of the potentials P and Q and $P(x_0) = Q(x_0)$, we construct k spikes concentrating near the local maximum point $x_0$. When x_0$ is a local maximum point of P and $x^{\ bar}_ 0$ is a local maximum point of Q, we construct k spikes of $ u $ concentrating at the local maximum point $ x_0$ and m spikes of v concentrating at the local maximum point $x^{\ bar}_ 0$ when $x_0 \ not = $x^{\ bar}_ 0$ This paper extends the main results established by Peng and Wang (Arch Ration Mech Anal 208:305-339, 2013) and Peng and Pi (Discrete Contin Dyn Syst 36:2205-2227, 2016), where the authors considered the case N = 3, p = 3.
Keywords
Nonlinear Schrodinger system;Lyapunov-Schmidt reduction;Singularity; Perturbation
Authors
ZHENG, M.; ZHANG, B.; RADULESCU, V.
Released
13. 6. 2023
Publisher
Springer Nature
ISBN
0095-4616
Periodical
APPLIED MATHEMATICS AND OPTIMIZATION
Year of study
88
Number
1
State
Federal Republic of Germany
Pages from
Pages to
56
Pages count
URL
https://link.springer.com/article/10.1007/s00245-023-09974-4
Full text in the Digital Library
http://hdl.handle.net/11012/213634
BibTex
@article{BUT183934, author="Maoding {Zheng} and Binlin {Zhang} and Vicentiu {Radulescu}", title="Multi-Peak Solutions for Coupled Nonlinear Schrodinger Systems in Low Dimensions", journal="APPLIED MATHEMATICS AND OPTIMIZATION", year="2023", volume="88", number="1", pages="1--56", doi="10.1007/s00245-023-09974-4", issn="0095-4616", url="https://link.springer.com/article/10.1007/s00245-023-09974-4" }