Přístupnostní navigace
E-application
Search Search Close
Publication detail
BAHROUNI, A. MISSAOUI, H. RADULESCU, V.
Original Title
Infinitely many smooth nodal solutions for Orlicz Robin problems
Type
journal article in Web of Science
Language
English
Original Abstract
In this note, we study a Robin problem driven by the Orlicz g-Laplace operator. In particular, by using a regularity result and Kajikiya's theorem, we prove that the problem has a whole sequence of distinct smooth nodal solutions converging to the trivial one. The analysis is developed in the most general abstract setting that corresponds to Orlicz-Sobolev function spaces.
Keywords
Nodal solutions;Orlicz-Sobolev spaces;Robin boundary value;Regularity
Authors
BAHROUNI, A.; MISSAOUI, H.; RADULESCU, V.
Released
17. 8. 2023
Publisher
Elsevier
ISBN
1873-5452
Periodical
APPLIED MATHEMATICS LETTERS
Year of study
142
Number
1
State
United States of America
Pages from
Pages to
7
Pages count
URL
https://www.sciencedirect.com/science/article/pii/S0893965923000678
Full text in the Digital Library
http://hdl.handle.net/11012/245041
BibTex
@article{BUT184003, author="Anouar {Bahrouni} and Hlel {Missaoui} and Vicentiu {Radulescu}", title="Infinitely many smooth nodal solutions for Orlicz Robin problems", journal="APPLIED MATHEMATICS LETTERS", year="2023", volume="142", number="1", pages="1--7", doi="10.1016/j.aml.2023.108635", issn="1873-5452", url="https://www.sciencedirect.com/science/article/pii/S0893965923000678" }