Publication detail

Indefinite Perturbations of the Eigenvalue Problem for the Nonautonomous p-Laplacian

RADULESCU, V. PAPAGEORGIOU, N. SUN, X.

Original Title

Indefinite Perturbations of the Eigenvalue Problem for the Nonautonomous p-Laplacian

Type

journal article in Web of Science

Language

English

Original Abstract

We consider an indefinite perturbation of the eigenvalue problem for the nonautonomous p-Laplacian. The main result establishes an exhaustive analysis in the nontrivial case that corresponds to noncoercive perturbations of the reaction. Using variational tools and truncation and comparison techniques, we prove an existence and multiplicity theorem which is global in the parameter. The main result of this paper establishes the existence of at least two positive solutions in the case of small perturbations, while no solution exists for high perturbations of the quasilinear term in the reaction.

Keywords

Nonautonomous differential operator; Eigenvalue problem, Indefinite potential; Noncoercive perturbation; Picone’s identity; Regularity and comparison results.

Authors

RADULESCU, V.; PAPAGEORGIOU, N.; SUN, X.

Released

27. 7. 2023

ISBN

1424-9294

Periodical

Milan Journal of Mathematics

Year of study

91

Number

2023

State

Republic of Italy

Pages from

353

Pages to

373

Pages count

21

URL

BibTex

@article{BUT184308,
  author="Nikolaos S. {Papageorgiou} and Vicentiu {Radulescu} and xueying {sun}",
  title="Indefinite Perturbations of the Eigenvalue Problem for the Nonautonomous p-Laplacian",
  journal="Milan Journal of Mathematics",
  year="2023",
  volume="91",
  number="2023",
  pages="353--373",
  doi="10.1007/s00032-023-00385-2",
  issn="1424-9294",
  url="https://link.springer.com/article/10.1007/s00032-023-00385-2"
}