Přístupnostní navigace
E-application
Search Search Close
Publication detail
RADULESCU, V. PAPAGEORGIOU, N. SUN, X.
Original Title
Indefinite Perturbations of the Eigenvalue Problem for the Nonautonomous p-Laplacian
Type
journal article in Web of Science
Language
English
Original Abstract
We consider an indefinite perturbation of the eigenvalue problem for the nonautonomous p-Laplacian. The main result establishes an exhaustive analysis in the nontrivial case that corresponds to noncoercive perturbations of the reaction. Using variational tools and truncation and comparison techniques, we prove an existence and multiplicity theorem which is global in the parameter. The main result of this paper establishes the existence of at least two positive solutions in the case of small perturbations, while no solution exists for high perturbations of the quasilinear term in the reaction.
Keywords
Nonautonomous differential operator; Eigenvalue problem, Indefinite potential; Noncoercive perturbation; Picone’s identity; Regularity and comparison results.
Authors
RADULESCU, V.; PAPAGEORGIOU, N.; SUN, X.
Released
27. 7. 2023
ISBN
1424-9294
Periodical
Milan Journal of Mathematics
Year of study
91
Number
2023
State
Republic of Italy
Pages from
353
Pages to
373
Pages count
21
URL
https://link.springer.com/article/10.1007/s00032-023-00385-2
BibTex
@article{BUT184308, author="Nikolaos S. {Papageorgiou} and Vicentiu {Radulescu} and xueying {sun}", title="Indefinite Perturbations of the Eigenvalue Problem for the Nonautonomous p-Laplacian", journal="Milan Journal of Mathematics", year="2023", volume="91", number="2023", pages="353--373", doi="10.1007/s00032-023-00385-2", issn="1424-9294", url="https://link.springer.com/article/10.1007/s00032-023-00385-2" }