Přístupnostní navigace
E-application
Search Search Close
Publication detail
FRIML, D. VÁCLAVEK, P.
Original Title
Recursive Variational Inference for Total Least-Squares
Type
journal article in Web of Science
Language
English
Original Abstract
This letter analyzes methods for deriving credible intervals to facilitate errors-in-variables identification by expanding on Bayesian total least squares. The credible intervals are approximated employing Laplace and variational approximations of the intractable posterior density function. Three recursive identification algorithms providing an approximation of the credible intervals for inference with the Bingham and the Gaussian priors are proposed. The introduced algorithms are evaluated on numerical experiments, and a practical example of application on battery cell total capacity estimation compared to the state-of-the-art algorithms is presented.
Keywords
Bayes methods; parameter estimation; identification; variational methods
Authors
FRIML, D.; VÁCLAVEK, P.
Released
26. 6. 2023
Publisher
IEEE
Location
PISCATAWAY
ISBN
2475-1456
Periodical
IEEE Control Systems Letters
Year of study
7
Number
1
State
United States of America
Pages from
2839
Pages to
2844
Pages count
6
URL
https://ieeexplore.ieee.org/document/10163935
Full text in the Digital Library
http://hdl.handle.net/11012/244278
BibTex
@article{BUT184309, author="Dominik {Friml} and Pavel {Václavek}", title="Recursive Variational Inference for Total Least-Squares", journal="IEEE Control Systems Letters", year="2023", volume="7", number="1", pages="2839--2844", doi="10.1109/LCSYS.2023.3289608", issn="2475-1456", url="https://ieeexplore.ieee.org/document/10163935" }