Přístupnostní navigace
E-application
Search Search Close
Publication detail
DOU, X. HE, X. RADULESCU, V.
Original Title
Multiplicity of positive solutions for the fractional Schrödinger-Poisson system with critical nonlocal term
Type
journal article in Web of Science
Language
English
Original Abstract
This paper deals with the following fractional Schrodinger-Poisson system: (-& UDelta;)su + u - K(x)f|u|2s*-3u = f ?(x)|u|q-2u,x & ISIN; Double-struck capital R3,(-& UDelta;)sf = K(x)|u|2s*-1,x & ISIN; Double-struck capital R3 with multiple competing potentials and a critical nonlocal term, where s & ISIN; (0, 1), q & ISIN; (1, 2) or q & ISIN; (4, 2s*), and 2s* = 6 3-2s is the fractional critical exponent. By combining the Nehari manifold analysis and the Ljusternik-Schnirelmann category theory, we establish how the coefficient K of the nonlocal critical nonlinearity affects the number of positive solutions. We propose a new relation between the number of positive solutions and the category of the global maximal set of K.
Keywords
ONCENTRATION-COMPACTNESS PRINCIPLE; NONLINEAR SCHRODINGER-EQUATIONS; KLEIN-GORDON-MAXWELLPOISSON EQUATIONS; SOLITARY WAVES; CALCULUS
Authors
DOU, X.; HE, X.; RADULESCU, V.
Released
28. 8. 2024
ISBN
1664-3615
Periodical
Bulletin of Mathematical Sciences
Year of study
14
Number
02
State
Republic of Singapore
Pages from
1
Pages to
56
Pages count
URL
https://www.worldscientific.com/doi/epdf/10.1142/S1664360723500121
BibTex
@article{BUT185748, author="Xilin {Dou} and Xiaoming {He} and Vicentiu {Radulescu}", title="Multiplicity of positive solutions for the fractional Schrödinger-Poisson system with critical nonlocal term", journal="Bulletin of Mathematical Sciences", year="2024", volume="14", number="02", pages="56", doi="10.1142/S1664360723500121", issn="1664-3615", url="https://www.worldscientific.com/doi/epdf/10.1142/S1664360723500121" }