Přístupnostní navigace
E-application
Search Search Close
Publication detail
TIANXIANG, G. RADULESCU, V.
Original Title
Non-autonomous double phase eigenvalue problems with indefinite weight and lack of compactness
Type
journal article in Web of Science
Language
English
Original Abstract
In this paper, we consider eigenvalues to the following double phase problem with unbalanced growth and indefinite weight,-Delta pau-Delta qu=lambda m(x)|u|q-2uinRN,$$\begin{equation*} \hspace*{3pc}-\Delta _pa u-\Delta _q u =\lambda m(x)|u|{q-2}u \quad \mbox{in} \,\, \mathbb {R}<^>N, \end{equation*}$$where N > 2$N \geqslant 2$, 1{0, 1}(\mathbb {R}N, [0, +\infty))$, a not equivalent to 0$a \not\equiv 0$ and m:RN -> R$m: \mathbb {R}N \rightarrow \mathbb {R}$ is an indefinite sign weight which may admit non-trivial positive and negative parts. Here, Delta q$\Delta _q$ is the q$q$-Laplacian operator and Delta pa$\Delta _pa$ is the weighted p$p$-Laplace operator defined by Delta pau:=div(a(x)| backward difference u|p-2 backward difference u)$\Delta _pa u:=\textnormal {div}(a(x)|\nabla u|{p-2} \nabla u)$. The problem can be degenerate, in the sense that the infimum of a$a$ in RN$\mathbb {R}N$ may be zero. Our main results distinguish between the cases p
Keywords
regularity; equations
Authors
TIANXIANG, G.; RADULESCU, V.
Released
8. 2. 2024
Publisher
London Mathematical Society
ISBN
0024-6093
Periodical
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY
Year of study
56
Number
2
State
United Kingdom of Great Britain and Northern Ireland
Pages from
734
Pages to
755
Pages count
22
URL
https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.12961
Full text in the Digital Library
http://hdl.handle.net/11012/245501
BibTex
@article{BUT186775, author="Gou {Tianxiang} and Vicentiu {Radulescu}", title="Non-autonomous double phase eigenvalue problems with indefinite weight and lack of compactness", journal="BULLETIN OF THE LONDON MATHEMATICAL SOCIETY", year="2024", volume="56", number="2", pages="734--755", doi="10.1112/blms.12961", issn="0024-6093", url="https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.12961" }