Přístupnostní navigace
E-application
Search Search Close
Publication detail
SEDLAŘÍK, M. KAZDA, T. CAPKOVÁ, D. VYROUBAL, P.
Original Title
Comparative analysis of SVR and ANFIS methods for estimating SOH in lithium ion batteries
Type
abstract
Language
English
Original Abstract
This paper compares two machine learning methods, Support Vector Regression (SVR) and Adaptive Neuro-Fuzzy Inference System (ANFIS), for estimating SVR parameters. The study was performed on two Samsung INR18650-35E batteries, subjected to 500 cycles using the Constant Current Constant Voltage (CCCV) method at ambient temperature. During this process, the batteries were charged and discharged at a constant rate of 0.5 C.
Keywords
Support Vector Regression, Adaptive Neuro-Fuzzy Inference System, Li-ion
Authors
SEDLAŘÍK, M.; KAZDA, T.; CAPKOVÁ, D.; VYROUBAL, P.
Released
2. 9. 2024
Location
Padova
Pages count
1
BibTex
@misc{BUT189543, author="Marek {Sedlařík} and Dominika {Capková} and Tomáš {Kazda} and Petr {Vyroubal}", title="Comparative analysis of SVR and ANFIS methods for estimating SOH in lithium ion batteries", booktitle="International Symposium ob Beyond Li-Ion Batteries 2024", year="2024", series="1", edition="1", pages="1", address="Padova", note="abstract" }