Přístupnostní navigace
E-application
Search Search Close
Publication detail
KOBLIHA, M. SCHWARZ, J. OČENÁŠEK, J.
Original Title
Bayesian Optimization Algorithms for Dynamic Problems
Type
article in a collection out of WoS and Scopus
Language
English
Original Abstract
This paper is an experimental study investigating the capability of Bayesian optimization algorithms to solve dynamic problems. We tested the performance of two variants of Bayesian optimization algorithms - Mixed continuous-discrete Bayesian Optimization Algorithm (MBOA), Adaptive Mixed Bayesian Optimization Algorithm (AMBOA) - and new proposed modifications with embedded Sentinels concept and Hypervariance. We have compared the performance of these variants on a simple dynamic problem - a time-varying function with predefined parameters. The experimental results confirmed the benefit of Sentinels concept and Hypervariance embedded into MBOA algorithm for tracking a moving optimum.
Keywords
BOA algorithm, dynamic problem, optimalization
Authors
KOBLIHA, M.; SCHWARZ, J.; OČENÁŠEK, J.
RIV year
2006
Released
8. 3. 2006
Publisher
Springer Verlag
Location
Budapest
ISBN
3-540-33237-5
Book
Applications of Evolutionary Computing
0302-9743
Periodical
Lecture Notes in Computer Science
Year of study
Number
3907
State
Federal Republic of Germany
Pages from
800
Pages to
804
Pages count
5
BibTex
@inproceedings{BUT22416, author="Miloš {Kobliha} and Josef {Schwarz} and Jiří {Očenášek}", title="Bayesian Optimization Algorithms for Dynamic Problems", booktitle="Applications of Evolutionary Computing", year="2006", journal="Lecture Notes in Computer Science", volume="2006", number="3907", pages="800--804", publisher="Springer Verlag", address="Budapest", isbn="3-540-33237-5", issn="0302-9743" }