Publication detail

Reverse Biased P-N Junction Noise in GaAsP Diodes with Avalanche Breakdown Induced Microplasmas

KOKTAVÝ, P. ŠIKULA, J.

Original Title

Reverse Biased P-N Junction Noise in GaAsP Diodes with Avalanche Breakdown Induced Microplasmas

Type

journal article - other

Language

English

Original Abstract

Random two-level or multiple-level current impulses may occur in electronic devices containing reverse biased p-n junctions in a certain operating mode. These impulses are usually rectangular, featuring constant amplitude, random pulse width and pulse origin time points. This phenomenon is generally ascribed to local avalanche breakdowns originating in p-n junction defect regions called microplasma regions. Based on experiment results, a two-state model of stochastic generation-recombination process has been elaborated for the two-level impulse noise allowing to derive some statistical characteristics of this process. It can be shown that the distribution of the probability density w(t0) of the impulse separation t0 and the probability density w(t1) of the impulse width t1 have exponential courses. The power spectral density of the noise current is of a G-R process type and depends on the particular microplasma properties. From the viewpoint of noise diagnostics, the most important features are the spectral density Su and noise current IN versus reverse current IR plots, because each local extreme of these plots corresponds to an active microplasma region. Thus obtained results may be used for p-n junction non-destructive diagnostics and quality assessment.

Keywords

Microplasma noise, Local avalanche breakdown, LED diodes, Reliability

Authors

KOKTAVÝ, P.; ŠIKULA, J.

RIV year

2002

Released

1. 1. 2002

ISBN

0219-4775

Periodical

Fluctuation and Noise Letters

Year of study

2

Number

2

State

Republic of Singapore

Pages from

65

Pages to

70

Pages count

6

BibTex

@article{BUT40837,
  author="Pavel {Koktavý} and Josef {Šikula}",
  title="Reverse Biased P-N Junction Noise in GaAsP Diodes with Avalanche Breakdown Induced Microplasmas",
  journal="Fluctuation and Noise Letters",
  year="2002",
  volume="2",
  number="2",
  pages="6",
  issn="0219-4775"
}