Přístupnostní navigace
E-application
Search Search Close
Publication detail
DIBLÍK, J. RŮŽIČKOVÁ, M. SCHMEIDEL, E. ZBASZYNIAK, M.
Original Title
Weighted asymptotically periodic solutions of linear volterra difference equations
Type
journal article - other
Language
English
Original Abstract
A linear Volterra difference equation of the form $$ x(n+1)=a(n)+b(n)x(n)+\sum\limits^{n}_{i=0}K(n,i)x(i) $$ where $x\colon\bN_0\to\bR$, $a\colon \bN_0\to\bR$, $K\colon\bN_0\times\bN_0\to \bR$ and $b\colon\bN_0 \to \bR\setminus\{0\}$ is $\omega$-periodic is considered. Sufficient conditions for the existence of weighted asymptotically periodic solutions of this equation are obtained. Unlike previous investigations, no restriction on $\prod_{j=0}^{\omega-1}b(j)$ is assumed. The results generalize some of the recent results.
Keywords
Linear Volterra difference equation, weighted asymptotically periodic solution
Authors
DIBLÍK, J.; RŮŽIČKOVÁ, M.; SCHMEIDEL, E.; ZBASZYNIAK, M.
RIV year
2011
Released
3. 8. 2011
ISBN
1085-3375
Periodical
Abstract and Applied Analysis
Year of study
Number
1
State
United States of America
Pages from
Pages to
14
Pages count
BibTex
@article{BUT72873, author="Josef {Diblík} and Miroslava {Růžičková} and Ewa {Schmeidel} and Malgorzata {Zbaszyniak}", title="Weighted asymptotically periodic solutions of linear volterra difference equations", journal="Abstract and Applied Analysis", year="2011", volume="2011", number="1", pages="1--14", issn="1085-3375" }