Publication detail

Semicascades with bitopological spaces formed by solution spaces of second-order linear homogeneous differential equations

CHVALINA, J. NOVÁK, M.

Original Title

Semicascades with bitopological spaces formed by solution spaces of second-order linear homogeneous differential equations

Type

conference paper

Language

English

Original Abstract

Using the realization theorem concerning realization of centralizers of set transformations by monoids of strongly isotone selfmaps of quasi-ordered sets (motivated by natural homomorphisms or p-homomorphisms of Kripke semantics) we solve certain modifications of the classical realization problem formulated by C. Ewerett, J. von Neumann, E. Teller and S. M. Ulam in the year 1948. In particular, in the contribution there are constructed semicascades with topological and bitopological phase spaces possessing endomorphism monoids realizable by continuous closed selfmaps of disconnected or connected topological spaces and also by special transformations of bitopological spaces satisfying certain bitopological separation axioms.

Keywords

bitopological space, continuous closed mapping, semicascade, solution space of a linear homogeneous differential equation of the second order, topological space

Authors

CHVALINA, J.; NOVÁK, M.

RIV year

2011

Released

22. 9. 2011

Publisher

Univerzita obrany

Location

Brno

ISBN

978-80-7231-818-6

Book

7. konference o matematice a fyzice na vysokých školách technických s mezinárodní účastí. Sborník příspěvků. Část 1 - matematika.

Pages from

191

Pages to

204

Pages count

14

BibTex

@inproceedings{BUT73875,
  author="Jan {Chvalina} and Michal {Novák}",
  title="Semicascades with bitopological spaces formed by solution spaces of second-order linear homogeneous differential equations",
  booktitle="7. konference o matematice a fyzice na vysokých školách technických s mezinárodní účastí. Sborník příspěvků. Část 1 - matematika.",
  year="2011",
  pages="191--204",
  publisher="Univerzita obrany",
  address="Brno",
  isbn="978-80-7231-818-6"
}