Přístupnostní navigace
E-application
Search Search Close
Publication detail
KARAFIÁT, M. BURGET, L. MATĚJKA, P. GLEMBEK, O. ČERNOCKÝ, J.
Original Title
iVector-Based Discriminative Adaptation for Automatic Speech Recognition
Type
article in a collection out of WoS and Scopus
Language
English
Original Abstract
The iVector is a low-dimensional fixed-length representation of information about speaker and acoustic environment. To utilize iVectors for adaptation, region dependent linear transforms (RDLT) are discriminatively trained using the MPE criterion on large amounts of annotated data to extract the relevant information from iVectors and to compensate speech features. The approach was tested on standard CTS data. We found it to be complementary to common adaptation techniques. On a well-tuned RDLT system with standard CMLLR adaptation we reached an 0.8% additive absolute WER improvement.
Keywords
Automatic speech recognition, I-vector, Discriminative adaptation
Authors
KARAFIÁT, M.; BURGET, L.; MATĚJKA, P.; GLEMBEK, O.; ČERNOCKÝ, J.
RIV year
2011
Released
11. 12. 2011
Publisher
IEEE Signal Processing Society
Location
Hilton Waikoloa Village, Big Island, Hawaii
ISBN
978-1-4673-0366-8
Book
Proceedings of ASRU 2011
Pages from
152
Pages to
157
Pages count
6
URL
http://www.fit.vutbr.cz/research/groups/speech/publi/2011/karafiat_asru2011_00152.pdf
BibTex
@inproceedings{BUT76442, author="Martin {Karafiát} and Lukáš {Burget} and Pavel {Matějka} and Ondřej {Glembek} and Jan {Černocký}", title="iVector-Based Discriminative Adaptation for Automatic Speech Recognition", booktitle="Proceedings of ASRU 2011", year="2011", pages="152--157", publisher="IEEE Signal Processing Society", address="Hilton Waikoloa Village, Big Island, Hawaii", isbn="978-1-4673-0366-8", url="http://www.fit.vutbr.cz/research/groups/speech/publi/2011/karafiat_asru2011_00152.pdf" }