Publication detail

Simulations of high-Q optical nanocavities with a gradual 1D bandgap

MAES, B. PETRÁČEK, J. BURGER, S. KWIECIEN, P. LUKSCH, J. RICHTER, I.

Original Title

Simulations of high-Q optical nanocavities with a gradual 1D bandgap

Type

journal article - other

Language

English

Original Abstract

High-quality cavities in hybrid material systems have various interesting applications. We perform a comprehensive modeling comparison on such a design, where confinement in the III-V material is provided by gradual photonic crystal tuning, a recently proposed method offering strong resonances. The III-V cavity couples to an underlying silicon waveguide. We report on the device properties using four simulation methods: finite-difference time-domain (FDTD), finite-element method (FEM), bidirectional eigenmode propagation (BEP) and aperiodic rigorous coupled wave analysis (aRCWA). We explain the major confinement and coupling effects, consistent with the simulation results. E.g. for strong waveguide coupling, we find quantitative discrepancies between the methods, which establishes the proposed high-index-contrast, lossy, 3D structure as a challenging modeling benchmark.

Keywords

Resonators, Photonic integrated circuits, Photonic crystals, Computational electromagnetic methods

Authors

MAES, B.; PETRÁČEK, J.; BURGER, S.; KWIECIEN, P.; LUKSCH, J.; RICHTER, I.

RIV year

2013

Released

11. 3. 2013

ISBN

1094-4087

Periodical

OPTICS EXPRESS

Year of study

21

Number

6

State

United States of America

Pages from

6794

Pages to

6806

Pages count

13

BibTex

@article{BUT98881,
  author="Bjorn {Maes} and Jiří {Petráček} and Sven {Burger} and Pavel {Kwiecien} and Jaroslav {Luksch} and Ivan {Richter}",
  title="Simulations of high-Q optical nanocavities with a gradual 1D bandgap",
  journal="OPTICS EXPRESS",
  year="2013",
  volume="21",
  number="6",
  pages="6794--6806",
  issn="1094-4087"
}