Course detail

Motor Vehicles

FSI-QMV-AAcad. year: 2010/2011

Subject motor vehicles focuses on problems of construction, testing, driving charecteristic and modern motor vehicles and trailers operation. Private cars, trucks, buses, semi-trailers and trailers. This subject is about structural solution of basic parts of modern motor vehicles e.g. axles and their suspension and damping, brake systems including electronic systems (ABS, ESP, HBA,... ), steering mechanisms, incorporation of engine aggregate into a car including its operating mechanism. Following will be a talk about active and pasive safety of vehicles including the most modern asistent systems in vehicles.

Language of instruction

English

Number of ECTS credits

6

Mode of study

Not applicable.

Offered to foreign students

Of all faculties

Learning outcomes of the course unit

Graduates of this subject will obtain complete rewiew of basic connections for motor vehicles construction including illustrations of specific technical solutions of both private cars and trucks of the most modern style. Furthemore, graduates will get an idea about possibilities component and complex automobile testing.

Prerequisites

kinematics basics, dynamics basics, strength of materials basics, machine parts design and mechanisms, vehicle dynamics

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

Requirements for Course-unit credit award: The orientation within problems discussed and the ability of solving them, examined by working-out assigned tasks without significant mistakes. Continuous study checking is carried out together with given tasks verification. Examination: The exam verifies and evaluates the knowledge of physical fundamentals of presented problems, theirs mathematical description on a presented level and application to solved tasks. The exam consists of a written part (test) and an oral part. Final evaluation consists of: 1. Evaluation of the work on seminars (elaborated tasks). 2. Result of the writing part of the exam (test). 3. Result of the oral part of the exam.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The target of this subject is to acquaint the graduates with fundamental part of modern technology of vehicles construction in connection with the user and technology of production.

Specification of controlled education, way of implementation and compensation for absences

Attendance at seminars is obligatory, checked by a teacher. The way of compensation of absence is solved individually with a course provider.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Goodsell, D.,Dictionary of Automotive Engineering. Butterworth-Heinemann. 2nd edition, 280pp, 1996. ISBN: 0750627956
Milliken, F., Race Car Vehicle Dynamics. Warrendale, SAE International 2nd edition, 890pp
Reimpell,J., Stoll,H., Betzler, J.W. The automotive chassis - engineering principles. SAE International; 2nd edition, 412pp. ISBN 0-340-61443-9

Recommended reading

Breass, Hans-Hermann. Vieweg Handbuch Kraftfahrzeugtechnik. Auflage 2005. ISBN 3-528-33114-3.
Buehler, Otto-Peter A. Omnibustechnik. ISBN 3-528-03928-0.
Hoepke, Erik. Nutzfahrzeugtechnik. Auflage 2004. ISBN 3-528-23898-4.
Stoffregen, Juergen. Motorradtechnik. Auflage 2004. ISBN 3-528-44940-3.

Classification of course in study plans

  • Programme N2301-2 Master's

    branch M-ADI , 2 year of study, winter semester, compulsory-optional

Type of course unit

 

Lecture

39 hod., optionally

Teacher / Lecturer

Syllabus

1. Types and conceptions of road vehicles – passenger cars (types of vehicle body and drive), trucks, buses, trailers and semi-trailers
2. Vehicle body – types of vehicle body (relation to the chassis), design of the body (styling, materials)
3. Vehicle body – design of the vehicle body in relation to active safety conditional, observational, controlling safety
4. Vehicle body – design of the vehicle body in relation to passive safety (crashes of the vehicles, biomechanics, traffic participants protection)
5. Tyres and wheels – tyres requirements, tyre designs, wheels, new tyre-wheel systems
6-7. Wheel suspensions – rigid axles, independent wheel suspensions, multiple-axle systems, wheel supports
8. Springing – springing types, anti-roll bars, shock absorbers
9. Steering – wheel alignment – axle kinematics (camber, caster, toe-in), steering systems, steering components (ball joints, power steering systems)
10.-11. Braking systems – friction brakes, braking components (components of braking systems), retarders, Anti-lock braking systems
12.-13. Motor vehicles testing