Course detail

Empiric Models

FSI-9EMMAcad. year: 2010/2011

If the important variables for a process are known or sought but the process model is unknown, an empirical approach to model building is required. The development of empirical models represents a continuous process that involves postulation of a model, experimentation to collect empirical data, "fitting" of the model, i.e. estimation of the model coefficients, and evaluation of results. The strategy of empirical model building is described in the course.

Language of instruction

Czech

Number of ECTS credits

2

Mode of study

Not applicable.

Learning outcomes of the course unit

Empiric model, fitting, residuum, adequate model

Prerequisites

Populations, samples, binomial and Poisson distributions, distributions of averages, distributions of a continuous probability, testing of hypothesis

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

Oral exam

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

If the important variables for a process are known or sought but the process model is unknown, an empirical approach to model building is required. The development of empirical models represents a continuous process that involves postulation of a model, experimentation to collect empirical data, "fitting" of the model, i.e. estimation of the model coefficients, and evaluation of results. The strategy of empirical model building is described in the course.

Specification of controlled education, way of implementation and compensation for absences

Not applicable.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

B. Maroš: Empirické modely I, Brno, 1989
D. M. Himmelblau: Process Analysis by Statistical Methods. John Wiley&Sons,New York 1969
K. Zvára: Regresní analýza. Academia, Praha 1989
Vícerozměrné statistické metody: Vícerozměrné statistické metody. SNTL/ALFA, Praha 1987

Recommended reading

B. Maroš: Empirické modely I. PC-DIR, Brno 1998
J. Anděl_: Matematická statistika. SNTL/ALFA, Praha 1978
K. Zvára: Vícerozměrné statistické metody. SNTL/ALFA, Praha 1987

Type of course unit

 

Lecture

20 hod., optionally

Teacher / Lecturer

Syllabus

1. Linear models. Linearization of the nonlinear model.
2. Linear models with one independent variable. Least squares estimation.
3. Analysis of variance. Variances of parameters.
4. Variances of predicted values.
5. ANOVA about the adequate model.
6. Confidence intervals for parameters.
7. Locus of confidence limits.
8. Locus of tolerance limits.
9. Confidence region.
10.Linear models with several independent variables.
11.Reziduals.