Course detail

Optimization I

FSI-VO1-KAcad. year: 2010/2011

The course deals with the following topics: Operations research, its methodology and relations to system theory and cybernetics. Systems modelling. Systems analysis tasks. Optimization problems. Formulation and properties of optimization problems. Simplex method. Artificial basis applications. Non-linear and convex problems. Quasi-convex programming. Dynamic programming of discrete deterministic processes. Critical Path Method. Examples of applications of operations research methods in technical and economic practice.

Language of instruction

Czech

Number of ECTS credits

6

Mode of study

Not applicable.

Learning outcomes of the course unit

<b>Knowledge: </b>Students will know basic approaches to operational research and systems analysis as a tool for creation of methods for the solution of problems of automation and computer science, and technological and economical problems in mechanical engineering.
<b>Skills: </b>Students will be able to formulate simple problems of operational research from the practice of mechanical engineering and economics. They will be able to create mathematical models for the above problems, to apply basic methods for their solution and to realise the methods by aids of contemporary tools of computer science.

Prerequisites

Knowledge of the basics of mathematical analysis, algebra, theory of sets, statistics and probability.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

<b>Course-unit credit: </b>Active participation in the seminars, elaboration of a given project. <b>Examination: </b>Written.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The aim of the course is to extend students' basic knowledge of the applied mathematics towards interdisciplinary and system direction, and make students familiar with basic approaches and methods for the solution of mathematized problems of economics in mechanical engineering and technology with aids of computer science.

Specification of controlled education, way of implementation and compensation for absences

Attendance at seminars is controlled. An absence can be compensated for via solving additional problems.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

BOMZE, L.M.; GROSSMANN, W.: Optimierung Theorie und Algorithmen. BI-Wiss.-Verl., Mannheim, pp. 610, 1993. ISBN 3-411-15091-2.
KLAPKA, J., PIŇOS, P.: Decision support system for multicriterial R&D and information systems projects selection. European Journal of Operational Research. 2002, vol. 140, is. 2, s. 434-446. Dostupný z WWW: .
LITTLECHILD, S.; SHUTLER, M. (eds.): Operations Research in Management. Prentice Hall, New York, pp. 298, 1991. ISBN 0-13638-8183
SKYTTNER, L.: General Systems Theory. An Introduction. Macmillan Press, London, pp. 290, 1996. ISBN 0-333-61833-5.

Recommended reading

KLAPKA, J.; DVOŘÁK, J.; POPELA, P.: Metody operačního výzkumu. VUTIUM, Brno, 2001. ISBN 80-214-1839-7

Classification of course in study plans

  • Programme B2341-3 Bachelor's

    branch B-AIŘ , 3 year of study, winter semester, compulsory

  • Programme N2301-2 Master's

    branch M-AIŘ , 1 year of study, winter semester, compulsory

Type of course unit

 

Guided consultation

22 hod., optionally

Teacher / Lecturer

Syllabus

1. Operations research, its methodology and relations to systems theory and cybernetics. Modelling of the system.
2. Problems of the systems analysis. Optimization problems.
3. Formulations and properties of the linear programming problems.
4. Basic theorem of linear programming.
5. Simplex method and its deduction and derivation.
6. Artificial basis method (two-phase simplex method).
7. Dual problem and sensitivity analysis.
8. Convex non-linear problems.
9. Quasiconvex programming.
10. Bellman Optimality Principle.
11. Dynamic programming of discrete deterministic processes and its applications.
12. Basics of network analysis. Critical Path Method.
13. Multicriterial Optimization and Multicriterial Selection.