Course detail

Methods and Equipment for Technical Diagnostic

FSI-XTD-KAcad. year: 2010/2011

The course familiarises students with the basic metrology terms and describes use. Terms as physical quantity, measurement, signal, classification of the measurements, basic measurement techniques, measurement facilities, algorithms for processing of the measured data, accuracy and errors in measurements, results and uncertainty of the measurements and methods of technical diagnostics are discussed.

Language of instruction

Czech

Number of ECTS credits

4

Mode of study

Not applicable.

Learning outcomes of the course unit

Students will acquire skills and experience with respect to measurement methods, application of sensors, and configurations and functional descriptions of measuring instruments.

Prerequisites

Successful completion of the course is conditional on the knowledge and skills acquired in the courses "Physics I", "Physics II", "Metrological Physics".

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.

Assesment methods and criteria linked to learning outcomes

Active participation in seminars and submitting written reports.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The course focuses on the physical principles of the method of measurement, on understanding of the operating principles of measurement hardware and on the problems encountered in the analysis, design, and application of such equipment.

Specification of controlled education, way of implementation and compensation for absences

Attendance at seminars in labs is required.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

ANTHONY, D.M. Engineering Metrology. New York: Pergamon Press, 1987.
DOEBELIN, O.D. Measurement Systems. Application and Design. 4. vydání. New York: McGraw-Hill, 1990. 960 s. ISMN 0-07-100697-4.
ORNATSKIJ, P.P. Teoretičeskije osnovy informacionno-izměritělnoj techniki. Kijev: Vyšča škola, 1976. 431 s.
SERWAY, R.A. and BEICHNER, R.J. Physics for Scientist and Engineers with Modern Physics. 5. vydání. Orlando: Saunders College Publisching, 2000. 1551 s.

Recommended reading

DOEBELIN, O.D. Measurement Systems. Application and Design. 4. vydání. New York: McGraw-Hill, 1990. 960 s. ISMN 0-07-100697-4.
Električeskije izměrenija nelekričeskich veličin. P.V. Novickij, ed. Leningrad: Energie, 1075. 575 s.
HALLIDAY, D., RESNICK, R. and WALKER, J. Fyzika. 1198 s. Brno-Praha:VUTIUM-PROMETHEUS, 2000. Přeloženo z: Fundamentals of Physics, 5.vydání: Wiley,1997 (s přihlédnutím ke změnám pro 6. vydání pro rok 2001).
JENČÍK, J., KUHN, L. a další. Technická měření ve strojírenství. Praha: SNTL, 1982. 580 s.

Classification of course in study plans

  • Programme N3901-2 Master's

    branch M-MŘJ , 1 year of study, summer semester, compulsory
    branch M-MŘJ , 1 year of study, summer semester, compulsory

Type of course unit

 

Guided consultation

4 hod., optionally

Teacher / Lecturer

Syllabus

Measured signals and their parameters. Input and output signals of measurement systems.
Informative contents of measurement devices.
Mathematical description of signals. Errors of signals.
Transformation of signals.
Precision of measurements.
Methods of analysis of the measurement results.
Basic characteristics of the measurement instruments.
Accuracy and precision of instruments.
Sensors.
Diagnostic methods.
Tomography.
Optimal analysis of results of measuring.
Experimental engineering analysis.

Laboratory exercise

9 hod., compulsory

Teacher / Lecturer

Syllabus

Statistical properties of a radioactive radiant.
Dependence of the oscillation period of a uniform plate upon the distance between the centre of oscillation and the centre of mass.
Moment of inertia of a body.
Noise of motor.
Calorimetry. Quantity of heat and specific heat.
Viscosity of liquids.
Poisson constant of the air.
Focal length of a convergent lens and a divergent lens.
Spectrography.
Refractometry. Measurement of refractive index.
Thermistor.
Phase difference between the voltage and the current in a ac circuit.
Absorption half-value thickness for gamma-rays.
Engineering application of a scattering of beta-rays.
Photodiode.